Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Acta Pharmacol Sin ; 44(7): 1455-1463, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2221797

ABSTRACT

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses challenges to the effectiveness of neutralizing antibodies. Rational design of antibody cocktails is a realizable approach addressing viral immune evasion. However, evaluating the breadth of antibody cocktails is essential for understanding the development potential. Here, based on a replication competent vesicular stomatitis virus model that incorporates the spike of SARS-CoV-2 (VSV-SARS-CoV-2), we evaluated the breadth of a number of antibody cocktails consisting of monoclonal antibodies and bispecific antibodies by long-term passaging the virus in the presence of the cocktails. Results from over two-month passaging of the virus showed that 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 from these cocktails were highly resistant to random mutation, and there was no breakthrough after 30 rounds of passaging. As a control, antibody REGN10933 was broken through in the third passage. Next generation sequencing was performed and several critical mutations related to viral evasion were identified. These mutations caused a decrease in neutralization efficiency, but the reduced replication rate and ACE2 susceptibility of the mutant virus suggested that they might not have the potential to become epidemic strains. The 9E12 + 10D4 + 2G1 and 7B9-9D11 + 2G1 cocktails that picked from the VSV-SARS-CoV-2 system efficiently neutralized all current variants of concern and variants of interest including the most recent variants Delta and Omicron, as well as SARS-CoV-1. Our results highlight the feasibility of using the VSV-SARS-CoV-2 system to develop SARS-CoV-2 antibody cocktails and provide a reference for the clinical selection of therapeutic strategies to address the mutational escape of SARS-CoV-2.


Subject(s)
Antibodies, Bispecific , COVID-19 , Humans , SARS-CoV-2 , Combined Antibody Therapeutics , Neutralization Tests , Antibodies, Bispecific/therapeutic use , Antibodies, Neutralizing
2.
Virol Sin ; 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2120403

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appear rapidly every few months. They have showed powerful adaptive ability to circumvent the immune system. To further understand SARS-CoV-2's adaptability so as to seek for strategies to mitigate the emergence of new variants, herein we investigated the viral adaptation in the presence of broadly neutralizing antibodies and their combinations. First, we selected four broadly neutralizing antibodies, including pan-sarbecovirus and pan-betacoronavirus neutralizing antibodies that recognize distinct conserved regions on receptor-binding domain (RBD) or conserved stem-helix region on S2 subunit. Through binding competition analysis, we demonstrated that they were capable of simultaneously binding. Thereafter, a replication-competent vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein was employed to study the viral adaptation. Twenty consecutive passages of the virus under the selective pressure of individual antibodies or their combinations were performed. It was found that it was not hard for the virus to adapt to broadly neutralizing antibodies, even for pan-sarbecovirus and pan-betacoronavirus antibodies. The virus was more and more difficult to escape the combinations of two/three/four antibodies. In addition, mutations in the viral population revealed by high-throughput sequencing showed that under the selective pressure of three/four combinational antibodies, viral mutations were not prone to present in the highly conserved region across betacoronaviruses (stem-helix region), while this was not true under the selective pressure of single/two antibodies. Importantly, combining neutralizing antibodies targeting RBD conserved regions and stem helix synergistically prevented the emergence of escape mutations. These studies will guide future vaccine and therapeutic development efforts and provide a rationale for the design of RBD-stem helix tandem vaccine, which may help to impede the generation of novel variants.

3.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1987920

ABSTRACT

The Omicron variant has swept through most countries and become a dominant circulating strain, replacing the Delta variant. The evolutionary history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggests that the onset of another variant (possibly another variant of concern (VOC) is inevitable. Therefore, the development of therapeutics that enable treatments for all Omicron-included VOCs/variants of interest (VOIs) and future variants is desired. Recently, the recombinant receptor decoy therapeutic angiotensin-converting enzyme 2 (ACE2)-Fc has exhibited good safety in a phase 1 clinical trial; therefore, its variant-resistant profile needs to be understood. Here, we conducted a comprehensive evaluation of its neutralization breadth against the Omicron variant and other VOCs/VOIs. Furthermore, to evaluate its resistance to future variants, we investigated its ability to neutralize various single-residue mutated variants. Next, we demonstrated its resistance to evasion via an experiment that rapidly and effectively stimulates virus evolution with a replication-competent virus model. In addition, we evaluated its efficacy for cocktail therapy. The combination of ACE2-Fc and neutralizing antibodies showed both efficacy and breadth in the simulation experiment. The underlying mechanism was revealed to be a synergistic effect in the cocktails. Collectively, this study deepens the understanding of the resistance profile of recombinant receptor decoy therapeutics and highlights the potential value of ACE2-Fc and neutralizing antibody cocktails in the subsequent anti-SARS-CoV-2 campaign. Furthermore, we also provide an effective method to study the resistance profile of antiviral agents and rapidly screen for potential cocktails to combat future variants.

SELECTION OF CITATIONS
SEARCH DETAIL